

THE 18TH EDITION OF THE INTERNATIONAL CONFERENCE EUROPEAN INTEGRATION REALITIES AND PERSPECTIVES

Barriers and Enablers of Circular Economy: A Systematic Literature Review

Ervisa Ndoka¹

Abstract: Recent studies have undoubtedly supported the necessity of moving towards a circular economy. To promote this need and identify the most effective and rapid solutions, a deeper understanding of which obstacles restrict and which catalyze the transition of organizations to the circular economy is necessary. With this in consideration, this study examines the drivers, obstacles, and practices that influence the development of the circular economy in emerging economies. through a systematic literature review. were taken in the study from Scopus database. The "Prisma" approach is used to examine the circular economy in terms of its enablers and inhibitors, and VOSviewer is then used to investigate the most investigated terms and their relationships, the most frequently mentioned authors and links between citations, as well as to identify the least explored keywords. Based on a systematic literature review and bibliometric analytical procedures: Top management commitment, consumers lack knowledge and awareness about reused/recycle products, infrastructure and logistics, financial limitation, short-term orientation, the lack of environmental education and the lack of supply chain are the most mentioned barriers by researchers. On the other hand, the main drivers towards circular economy models are innovation, cooperation, waste reduction, industrial symbiosis, etc. This study contributes to an abundance of knowledge on circular business models, the challenges they face, and the drives that move them forward especially in emerging countries. This could aid decision-makers in implementing the proper incentive programs and serve as a roadmap for more research in this field.

Keywords: Circular economy; barriers; enables; bibliometric; literature review; research gap

JEL Classification: M21; M14; M0

1. Introduction

The circular economy (CE) has been proposed as a model to reduce resource consumption and waste generation, and promote sustainable development. However, the implementation of CE principles faces several challenges and barriers that hinder its adoption in practice. This literature review aims to identify and analyze the main barriers to the circular economy and the approaches proposed to overcome them.

Circular economy (CE) is a rather controversial concept (Korhonen et al., 2018). Despite this CE is receiving more and more attention and this is noted by the exponential growth of research in this field (Murray et al., 2017). However, the main principles of the CE concept arose in the 1960s and were further debated throughout the 1970s and beyond (Kirchherr et al., 2018).

Furthermore, the circular economy has been studied by a variety of academic fields, and it has undoubtedly come under the eye of management studies that are conscious of how the external business environment affects the adoption of best practices across the board in management. While

¹ University of Tirana, Tirana, Albania, Address: Place, "Mother Tereza" Tirana, Albania, Corresponding author: ervisa.ruka@unitir.edu.al.

ISSN: 2067 – 9211

many businesses and policy circles have expressed support for the CE, its implementation looks to be in its early stages (Ghisellini et al., 2016). Although CE targets have been frequently highlighted and adopted, for example as a part of the EU and China's future strategies, there are still a number of environmental and economic barriers to CE, including a lack of financial capability and support as well as the high costs of novel technologies (Khan et al., 2022). This study aims to answer these research questions:

What are the main barriers and drivers to move towards the circular economy?

What are some differences in emerging economy taking into consideration recent studies?

A bibliographic analysis of 172 articles published in Scopus about the circular economy and barriers or drivers implementing circular economy.

This study contributes to the identification of the main barriers that businesses have to move towards circular models and what drives them, first from the perspective of developing countries.

2. Literature Review

Although the circular economy is still a relatively new concept, it has recently attracted a lot of attention in the literature. In the scientific literature, the circular economy concept has been discussed from a variety of interdisciplinary angles, such as industrial ecology, product design techniques, environmental, political, and social science domains (Ferasso et al., 2020). Of course, several definitions by various authors also take this into account. The circular economy is conceptualized in a variety of ways because it is a multidisciplinary topic, which creates a problematic understanding of its concept (Gladek, 2017).

The Ellen MacArthur Foundation (2013) provided one of the definitions that is often referred to, defining the Circular Economy as: "an industrial system that is restorative or regenerative by intention and design. It replaces the end-of-life concept with restoration, shifts towards the use of renewable energy, eliminates the use of toxic chemicals, which impair reuse and return to the biosphere, and aims for the elimination of waste through the superior design of materials, products, and systems and business models" (Ellen MacArthur Foundation, 2013, p. 7).

Prior research has highlighted many barriers to circular economy business models implementation that make organizations hesitant to adopt this new economic model (Hina et al., 2022). Financial uncertainties and more complex business processes, in comparison to the linear business model, are some of the significant barriers mentioned in the earlier literature (Bocken & Geradts, 2020).

Furthermore, consumer preferences, a lack of appropriate infrastructure, and legal constraints all restrict the effective application of circular economy (Guldmann & Huulgaard, 2020).

Kirchherr (2018) conducted a study on barriers to the circular economy in European Union countries with 208 respondents and 47 expert interviews and concluded that cultural barriers, especially a lack of consumer interest and understanding, as well as a hesitant organizational culture, are regarded as the primary circular economy barriers by businesses and policymakers (Kirchherr et al., 2018).

3. Tools and Methodology

To fulfill the research goal, a systematic literature review was chosen as an appropriate approach to a complete literature analysis. The "Prisma" method is used to study the drivers and barriers of the circular economy. The Meta-Analysis (PRISMA), launched in 2009, serves as a tool for all systematic reviewers to transparently report varied studies and findings. It is a process for identifying, selecting, and synthesizing studies (Page et al., 2021).

In this paper, the final articles in English published in the Scopus database (https://www.scopus.com) were considered. Initially, the search used the keywords "circular economy" and "enables" OR "drivers" OR "barriers". This resulted in 189 documents. From them, 10 articles were excluded for inappropriateness with the topic. A total of 179 articles were included for further examination as is shown in figure 1. The PRISMA flow map illustrates the distribution of articles by year of publication. Articles were published from 2011 to April 2023.

Figure 2. Scientific Articles about "Barriers" OR "Drivers" OR "Enables" AND "Circular Economy" in Scopus (n=179)

Scopus: data processed by the authors

As a first observation, an exponential increase in publications has been seen since 2011. This demonstrates scholars' increased interest in the circular economy and their intention to discover the barriers that prevent firms and economies from transitioning to this new economic model. Recent worldwide happenings may further encourage study efforts on this area.

On the other hand, an assessment of the existing body of knowledge suggests that the majority of publications on drivers and factor enables to CE originate in European and Asian countries as is shown on the figure 3.

Scopus: data processed by the authors

After sectioning the articles that were analyzed, the Vos Viewer program was used to visualize the focus of the main themes of these studies. For further literature analysis, the procedure recommended by Van Eck and Waltman (2022) was followed. Bibliometric analysis provides results based on quantitative properties and determines the relationships between terms, the best understanding of the studied concept. It also helps identify the most common connections between terms, as well as emerging terms that have not received much attention in previous literature. Focusing on the purpose of this study, exactly how the two concepts, the circular economy and the barriers and drivers, are related to each other and to other terms or even what are some research gaps, the study continues with the bibliometric analysis. This analysis was carried out divided into 2 parts of the articles, separating the barriers and drivers. In the first group where 101 articles are included, were analyzed in a TXT file containing: citation information, bibliographic information, abstract and keywords, funding details and other information. The minimum number of keyword repetitions was set to 5 and this resulted in the maps shown in the figures 4 and 5 below.

Figure 4. The Map of Key Terms within the Circular Economy and Barriers Literature¹ Source: Scopus; data processed in VOSViewer

Figure 5. The Map of Key Terms within Circular Economy and Drivers' Literature2 Source: Scopus; data processed in VOSViewer

Different authors, depending on different countries and different stages of economic development, have identified different barriers, such as the obstacles to moving towards a circular economy.

Market globalization and stronger environmental rules are two examples of social drivers putting pressure on businesses to discover alternatives to existing business models (Zhu et al., 2011). Studies in developing countries highlight that multi-stakeholder collaboration is an important antecedent to CE implementation in developing countries (Mishra et al., 2021).

On the other hand, businesses are worried about technological barriers because they perceive changes in both products and production/take-back processes and are unclear how they will work and how much it will cost (Ritzén & Sandström, 2017). In some cases, infrastructure barriers make sustainable consumer behavior impossible or uncomfortable, necessitating additional time and money (thus sustainable consumer behavior is not completely prevented but practiced less regularly) (Ratner et al., 2020a). Among the articles analyzed, the most evident barrier is the financial and legal or political barrier. Below are 97 barriers grouped in 10 main areas.

¹ Colour figure can be viewed at https://tinyurl.com/22g6aoaeeenSs.

² Colour figure can be viewed at https://tinyurl.com/22g6aoaeeenSs.

Green Economy and Sustainable Development

Policy & Regulatory	Financial	Knowledge/exp erience	Technological	Awareness
1- Lack of	1- financial	1-Lack of	1-Lack of	1-Public
governmental support	constraints and	knowledge and	processing	perception;
and administrative	limitations	expertise;	technologies;	2- Absence of
burden;	2- high setup costs:	2-Consumers	2- Technological	standard
2- Lack of stringent	3- Lack of returns	lack knowledge	limitations and lack	system to
legislation and policies;	and profits: 4-	and awareness	of eco-innovation;	evaluate
3- Administrative	long-term financial	about	3- Availability of	performance;
processes and	profitability:	reused/recycle;	suitable processing	3- The
regulations	5-dependence on high	3- Insufficient	technology;	consumers
4- An inadequate legal	investments in	publicity and	4- infrastructure	lack
framework for the	production process	education on the	barriers make	awareness
management;	6- technologies and	recycling of	sustainable	about
5- Lack of effective	the resulting	construction and	consumer behavior	reused/recycle
execution of	uncertainties about	demolition	impossible or	• •
environmental	returns;	waste;	uncomfortable,	4- Lack of
regulations;	7- high costs for	4-Lack of	necessitating	awareness and
6- Lack of legislation	production and	adequate	additional time and	customer
concerning the circular	marketing;	the design stage	money (Rather et $a_1 = 2020$)	acceptance;
economy.	8- cost of delivering	the design stage;	al., 2020). 5. Infrastructural	5- LOW
/- Lack of the	high-quality circular	5- Lack OI	5- Inirastructural	awareness of
and regulational	products at the firm	enective	logistics 6 Logic of	customers
and regulations;	level;	guidance and	iogistics; 0- Lack of	regarding
8- madequate	9- lack of funds for	standards for the	tackpology and	sustainability;
nicentives from the	industry 4.0	collection	innovation	initiativos will
government sector and	initiative;	mathods:	7 Lack of adaquate	ha raquirad:
0 inoffective legislation	10- insufficient	6 Lack of	7- Lack of adequate	7 The lack of
and controls:	financial resources;	0- Lack 01 expert	innovation	environmental
10- lack of government	11- lack of financial	knowledge.	8- Lack of long-	education and
support and incentives.	incentives and a	7-Lack of	term support for the	culture of
11- protocols limited	higher cost related to	successful	implementation of	environmental
12-use of circularity	recycled materials in	circular business	recovery	protection:
criteria in public	the supply chain;	model	technologies	8-
tenders and lack of CE	12- high costs but	measures:	9- Lack of	unaware/limite
standards:	low economic	8-	technology and	d knowledge
13- Regulatory	benefits in short-	Misconception	innovation;	cultural
challenges and	term;	of the	10- Limited	barriers,
constraints;	13-high investment	refurbishment	technology	particularly a
14- The absence of	costs and difficulties	concept;	11- reluctance to	lack of
state-of-the-art waste	in finding financing	9-Limited	change and	consumer
disposal facilities such	conomics	knowledge;	technological	interest and
as engineered landfills;	14 accounting	10- lack of an	immaturity	awareness as
15- incinerators, and	reporting herriors 15	information	technological	well as a
anaerobic digestions	financial and	exchange	challenges;	hesitant
plants;	economic barriers:	system between	12- immaturity and	9- company
16- the complexity of	16 absence of	different	obsolescence;	culture.
administrative and	standard system to	stakeholders	13- the lack of	
legal procedures;	evaluate		appropriate	(Liu et al.,
17- the lack of	performance.	(Dieckmann et	infrastructure.	2021),
regulatory pressures;	17- costs of meeting	al., 2020),		(Kirchherr et
18- the regulatory	(Paletta et al 2019)	(Chen et al.,	(Dieckmann et al.,	al., 2018).
framework and the	(Takacs et al. 2022)	2021), (Takacs	2020), (Ratner et	(Hartley et al.,
overall economic	(Zhang et al 2019)	et al., 2022),	al., 2020b), (Takacs	2022),
viability of the	(García-Ouevedo et	(Zhang et al.,	et al., 2022),	Govindan et
transition;	al., 2020) (Hartlev et	2019), (Hartley	(Huang et al.,	al., 2022)
19- weak enforcement	al., 2022), (Govindan	et al., 2022),	2021),	
of EU; 23- waste	, <u></u>), (<u>_</u>) incum			

legislation rules	et al., 2022), (Huang	(Huang et al.,	
(Dieckmann et al.,	et al., 2021),	2021),	
2020), (Paletta et al.,			
2019), (Zhang et al.,			
2019), (Liu et al.,			
2021), (García-			
Quevedo et al., 2020),			
(Rizos & Bryhn, 2022)			
1			

Market	Supply chain	Human	Management	Product & Material	
Market	Supply chain	resources	issues		
1-Lack of large	1-challenging	1-a lack of human	1-agency and	1-basic material	
enough market	business-to-business	resources to	ownership issues in	properties and	
for recovered	(B2B) cooperation;	perform these	C&D waste	product	
components;	2- complex supply	practices;	2-management	characteristics	
2- Lack of	chains;	2-the	short-term	2-lack of high-	
industrial	3- lack of rules for	organizational	corporate goals. 3-	quality recycling	
support	transparency across	context;	short-term	materials	
3-lack of robust	supply chains;	3- lack of a skilled	orientation	3- difficulty in	
estimate about	4-lack of sufficiently	workforce that	3- economically	developing a	
food waste;	developed industrial	understands	dominated	business case for	
3- insufficient	symbiosis (IS);	Industry 4.0,	thinking;	DfD (design for	
market demand	5- lack of supply		4-Top management	deconstruction)', and	
4- lack of	chain (SC) design	(García-Quevedo	commitment and	'lack of effective	
consumer	and optimization;	et al., 2020)	poor corporate	DfD tools';	
interest;	6- lack of supply	, ,	social	4- shortage of high-	
5- lack of market	chain integration and		responsibility.	quality recycling	
pressures and	effects of supply		(Sonar et al., 2023).	materials and	
demands:	chain complexity:		(Mahpour, 2018).	shortage of	
6-lack of	7-limited availability		(F , , ,	resources.	
standards for	of circular supply			(Dieckmann et al.,	
designing	streams combined			2020), (Paletta et al.,	
recycled	with the orientation			2019), (Takacs et al.,	
products;	of existing			2022), Govindan et	
7- low customer	production systems			al., 2022) (Huang et	
demand for	toward linear supply			al., 2021),	
recycled textile	chains;			, ,,	
products;	8- constrain CE				
8- the lack of a	transition at the				
second-hand	industry level				
market;	9- The challenge of				
9- unwillingness	collaborative				
to engage in	innovation among				
trade-offs;	supply chain				
,	partners;				
(Takacs et al.,	1 /				
2022), (Zhang et	(Huang et al., 2021),				
al., 2019), Huang	(Rizos & Bryhn,				
et al., 2021)	2022)				

4. Conclusions and Recommendation

Some of the drivers for a circular economy include the growing awareness of environmental issues, the need to reduce resource depletion and the potential economic benefits of circular approach.

The authors have mentioned a large number of barriers which in this study are grouped into: policy and regulatory, financial, knowledge/experience, technological, awareness, market, supply chain, human resources, management issues and Product and material.

Overall, while there are significant drivers for a circular economy, addressing the barriers will be crucial to its successful implementation and mainstream adoption.

5. Limitation

First, because of the importance of Scopus and the presence of numerous indexed studies, this analysis focused solely on it. Second, while recent research patterns have been thought to anticipate future research directions, those propositions have not been empirically verified. Third, keyword frequencies are used in this analysis. It is suggested that such assessments be accompanied by concrete case studies.

References

Bocken, N. M. P. & Geradts, T. H. J. (2020). Barriers and drivers to sustainable business model innovation: Organization design and dynamic capabilities. *Long Range Planning*, 53(4), 101950. https://doi.org/10.1016/j.lrp.2019.101950.

Chen, W.-K.; Nalluri, V.; Hung, H.-C.; Chang, M.-C. & Lin, C.-T. (2021). Apply DEMATEL to Analyzing Key Barriers to Implementing the Circular Economy: An Application for the Textile Sector. *Applied Sciences*, 11(8), p. 3335. https://doi.org/10.3390/app11083335.

Dieckmann, E.; Sheldrick, L.; Tennant, M.; Myers, R. & Cheeseman, C. (2020). Analysis of Barriers to Transitioning from a Linear to a Circular Economy for End-of-Life Materials: A Case Study for Waste Feathers. *Sustainability*, 12(5), p. 1725. https://doi.org/10.3390/su12051725.

Ellen MacArthur Foundation. (2013). Towards the Circular Economy, Accelerating the scale-up across the global supply chain.

García-Quevedo, J.; Jové-Llopis, E. & Martínez-Ros, E. (2020). Barriers to the circular economy in European small and medium-sized firms. *Business Strategy and the Environment*, 29(6), pp. 2450–2464. https://doi.org/10.1002/bse.2513.

Ghisellini, P.; Cialani, C. & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. *Journal of Cleaner Production*, 114, pp. 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007.

Govindan, K.; Nasr, A. K.; Karimi, F. & Mina, H. (2022). Circular economy adoption barriers: An extended fuzzy best-worst method using fuzzy DEMATEL and Supermatrix structure. *Business Strategy and the Environment*, 31(4), pp. 1566–1586. https://doi.org/10.1002/bse.2970.

Guldmann, E. & Huulgaard, R. D. (2020). Barriers to circular business model innovation: A multiple-case study. *Journal of Cleaner Production*, 243, p. 118160. https://doi.org/10.1016/j.jclepro.2019.118160

Hartley, K.; Roosendaal, J. & Kirchherr, J. (2022). Barriers to the circular economy: The case of the Dutch technical and interior textiles industries. *Journal of Industrial Ecology*, 26(2), pp. 477–490. https://doi.org/10.1111/jiec.13196

Hina, M.; Chauhan, C.; Kaur, P.; Kraus, S. & Dhir, A. (2022). Drivers and barriers of circular economy business models: Where we are now, and where we are heading. *Journal of Cleaner Production*, 333, p. 130049. https://doi.org/10.1016/j.jclepro.2021.130049.

Huang, Y.-F.; Azevedo, S. G.; Lin, T.-J.; Cheng, C.-S. & Lin, C.-T. (2021). Exploring the decisive barriers to achieve circular economy: Strategies for the textile innovation in Taiwan. *Sustainable Production and Consumption*, 27, pp. 1406–1423. https://doi.org/10.1016/j.spc.2021.03.007.

itzén, S. & Sandström, G. Ö. (2017). Barriers to the Circular Economy – Integration of Perspectives and Domains. *Procedia CIRP*, 64, pp. 7–12. https://doi.org/10.1016/j.procir.2017.03.005.

Khan, S. A.; Mubarik, M. S. & Paul, S. K. (2022). Analyzing cause and effect relationships among drivers and barriers to circular economy implementation in the context of an emerging economy. *Journal of Cleaner Production*, 364, p. 132618. https://doi.org/10.1016/j.jclepro.2022.132618.

Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A. & Hekkert, M. (2018). Barriers to the Circular Economy: Evidence From the European Union (EU). *Ecological Economics*, 150, pp. 264–272. https://doi.org/10.1016/j.ecolecon.2018.04.028.

Korhonen, J.; Honkasalo, A. & Seppälä, J. (2018). Circular Economy: The Concept and its Limitations. *Ecological Economics*, 143, pp. 37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041.

Liu, Y.; Wood, L. C.; Venkatesh, V. G.; Zhang, A. & Farooque, M. (2021). Barriers to sustainable food consumption and production in China: A fuzzy DEMATEL analysis from a circular economy perspective. *Sustainable Production and Consumption*, 28, pp. 1114–1129. https://doi.org/10.1016/j.spc.2021.07.028.

Mahpour, A. (2018). Prioritizing barriers to adopt circular economy in construction and demolition waste management. *Resources, Conservation and Recycling*, 134, pp. 216–227. https://doi.org/10.1016/j.resconrec.2018.01.026.

Mishra, J. L.; Chiwenga, K. D. & Ali, K. (2021). Collaboration as an enabler for circular economy: A case study of a developing country. *Management Decision*, 59(8), pp. 1784–1800. https://doi.org/10.1108/MD-10-2018-1111.

Murray, A., Skene, K. & Haynes, K. (2017). The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. *Journal of Business Ethics*, 140(3), 369–380. https://doi.org/10.1007/s10551-015-2693-2

Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.; Hoffmann, T. C.; Mulrow, C. D.; Shamseer, L.; Tetzlaff, J. M.; Akl, E. A.; Brennan, S. E.; Chou, R.; Glanville, J.; Grimshaw, J. M.; Hróbjartsson, A.; Lalu, M. M.; Li, T.; Loder, E. W.; Mayo-Wilson, E.; McDonald, S. & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *Systematic Reviews*, 10(1), p. 89. https://doi.org/10.1186/s13643-021-01626-4

Paletta, A.; Leal Filho, W.; Balogun, A.-L.; Foschi, E. & Bonoli, A. (2019). Barriers and challenges to plastics valorisation in the context of a circular economy: Case studies from Italy. *Journal of Cleaner Production*, 241, p. 118149. https://doi.org/10.1016/j.jclepro.2019.118149

Ratner, S.; Lazanyuk, I.; Revinova, S. & Gomonov, K. (2020a). Barriers of Consumer Behavior for the Development of the Circular Economy: Empirical Evidence from Russia. *Applied Sciences*, 11(1), 46. https://doi.org/10.3390/app11010046.

Ratner, S.; Lazanyuk, I.; Revinova, S. & Gomonov, K. (2020b). Barriers of Consumer Behavior for the Development of the Circular Economy: Empirical Evidence from Russia. *Applied Sciences*, 11(1), 46. https://doi.org/10.3390/app11010046.

Rizos, V. & Bryhn, J. (2022). Implementation of circular economy approaches in the electrical and electronic equipment (EEE) sector: Barriers, enablers and policy insights. *Journal of Cleaner Production*, 338, p. 130617. https://doi.org/10.1016/j.jclepro.2022.130617

Sonar, H.; Ghag, N.; Kharde, Y. & Ghosh, S. (2023). Analysis of barriers affecting circular economy adoption in food supply chain: A strategic perspective. *Business Strategy and the Environment*. https://doi.org/10.1002/bse.3416.

Takacs, F.; Brunner, D. & Frankenberger, K. (2022). Barriers to a circular economy in small- and medium-sized enterprises and their integration in a sustainable strategic management framework. *Journal of Cleaner Production*, 362, p. 132227. https://doi.org/10.1016/j.jclepro.2022.132227

Zhang, A.; Venkatesh, V. G.; Liu, Y.; Wan, M.; Qu, T. & Huisingh, D. (2019). Barriers to smart waste management for a circular economy in China. *Journal of Cleaner Production*, 240, pp. 118198. https://doi.org/10.1016/j.jclepro.2019.118198.

Zhu, Q.; Geng, Y,I Sarkis, J. & Lai, K. (2011). Evaluating green supply chain management among Chinese manufacturers from the ecological modernization perspective. *Transportation Research Part E: Logistics and Transportation Review*, 47(6), pp. 808–821. https://doi.org/10.1016/j.tre.2010.09.013.

https://www.scopus.com.