Behavior of Production Factors when Changing their Price for a CobbDouglas Production Function

Cătălin Angelo Ioan ${ }^{1}$

Abstract

The paper deals with the behavior of the factors of production when changing their price as well as the total cost for a Cobb-Douglas production function.

Keywords: production function; Cobb-Douglas; total cost

1. Introduction

Let us consider a firm F whose activity is formalized using a production function Q which depends on a number of production factors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{n} \geq 2$. In order to ensure its competitiveness on the market, its main purpose is to reduce its total cost which will implicitly lead to the output of its products at the lowest possible cost. On the other hand, the company wants to maximize its profit. For example, we will consider the production function as Cobb-Douglas type, which is equivalent to a constancy of the elasticities of production in relation to the factors of production, which is not restrictive, at least for a limited time.

The Cobb-Douglas function has the following expression:
$\mathrm{Q}: \mathrm{D} \subset \mathbf{R}_{+}^{\mathrm{n}}\left\{\{0\} \rightarrow \mathbf{R}_{+},\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\gamma \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}} \in \mathbf{R}_{+} \forall\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{D}, \gamma \in \mathbf{R}_{+}^{*}, \alpha_{1}, \ldots, \alpha_{\mathrm{n}} \in \mathbf{R}_{+}^{*}\right.$.
$Q_{x_{i}}^{\prime}=\gamma \alpha_{i} x_{1}^{\alpha_{1}} \ldots x_{i}^{\alpha_{i}-1} \ldots x_{n}^{\alpha_{n}}=\frac{\alpha_{i} Q}{x_{i}}, i=\overline{1, n}$
The main indicators are:

- $\quad \eta_{\mathrm{x}_{\mathrm{i}}}=\frac{\partial Q}{\partial x_{i}}=\gamma \alpha_{\mathrm{i}} \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{i}}^{\alpha_{\mathrm{i}}-1} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}=\frac{\alpha_{\mathrm{i}} \mathrm{Q}}{\mathrm{x}_{\mathrm{i}}}, \mathrm{i}=\overline{1, \mathrm{n}}$
- $\quad \mathrm{w}_{\mathrm{x}_{\mathrm{i}}}=\frac{Q}{x_{i}}=\gamma \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{i}}^{\alpha_{\mathrm{i}}-1} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}=\frac{\mathrm{Q}}{\mathrm{x}_{\mathrm{i}}}, \mathrm{i}=\overline{1, \mathrm{n}}$
- $\quad \operatorname{RMS}(\mathrm{i}, \mathrm{j})=\frac{\alpha_{i} \mathrm{x}_{\mathrm{j}}}{\alpha_{\mathrm{j}} \mathrm{x}_{\mathrm{i}}} \mathrm{i}, \mathrm{j}=\overline{1, \mathrm{n}}$
- $\quad \varepsilon_{x_{\mathrm{i}}}=\frac{\mathrm{n}_{\mathrm{x}_{\mathrm{i}}}}{\mathrm{w}_{\mathrm{x}_{\mathrm{i}}}}=\alpha_{\mathrm{i}}, \mathrm{i}=\overline{1, \mathrm{n}}$
- $\sigma_{\mathrm{ij}}=-1, \mathrm{i}, \mathrm{j}=\overline{1, \mathrm{n}}$

[^0]
2. Behavior of Production Factors when Changing their Price for a Cobb-Douglas Production Function

Considering now the problem of minimizing costs for a given production Q_{0}, where the prices of inputs are $\mathrm{p}_{\mathrm{i}}, \mathrm{i}=\overline{1, \mathrm{n}}$, we have:

$$
\left\{\begin{array}{c}
\min \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{x}_{\mathrm{k}} \\
\gamma \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}} \geq \mathrm{Q}_{0} \\
\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \geq 0
\end{array}\right.
$$

From the obvious relations: $\left\{\begin{array}{l}\frac{\alpha_{1}}{p_{1} x_{1}}=\ldots=\frac{\alpha_{n}}{p_{n} x_{n}} \\ \gamma x_{1}^{\alpha_{1}} \ldots x_{n}=Q_{0}\end{array}\right.$ we obtain: $\left\{\begin{array}{c}x_{k}=\frac{\alpha_{k} p_{n}}{\alpha_{n} p_{k}} x_{n}, k=\overline{1, n-1} \\ \gamma x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}=Q_{0}\end{array}\right.$ and from the second equation: $\gamma \frac{p_{n}^{\sum_{n}^{n}=1} \alpha_{\mathrm{k}}}{\alpha_{\mathrm{n}}^{\sum_{\mathrm{n}=1}^{\mathrm{n}-1} \alpha_{\mathrm{k}}} \prod_{\mathrm{k}=1}^{\mathrm{n}=1} \alpha_{\mathrm{k}}^{\mathrm{n}=1} \mathrm{p}_{\mathrm{k}}^{\alpha_{\mathrm{k}}}} \mathrm{x}_{\mathrm{k}}^{\sum_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}}=\mathrm{Q}_{0}$. Noting $\mathrm{r}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}>0$, we finally obtain:
$\overline{\mathrm{x}}_{\mathrm{k}}=\frac{\left(\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}}^{\alpha_{\mathrm{k}}}\right)^{1 / \mathrm{r}}}{\left(\prod_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}^{\mathrm{k}}\right)^{1 / \mathrm{r}}} \frac{\alpha_{\mathrm{k}}}{\mathrm{p}_{\mathrm{k}}} \frac{\mathrm{Q}_{0}^{1 / \mathrm{r}}}{\gamma^{1 / \mathrm{r}}}, \mathrm{k}=\overline{1, \mathrm{n}}$
The total cost is:
$\mathrm{TC}\left(\mathrm{Q}_{0}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}=\frac{\left(\prod_{\mathrm{i}}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}}^{\alpha_{\mathrm{i}}}\right)^{1 / \mathrm{r}}}{\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \mathrm{o}_{\mathrm{i}}^{1 / \mathrm{r}}\right)^{1 / \mathrm{r}}} \frac{\gamma^{1 / r}}{\gamma^{1 / r}}$.
Let us now calculate the influence of the price increase of one of the factors of production on the absolute value of that factor.

In particular:
$\frac{\partial \bar{x}_{\mathrm{k}}}{\partial p_{k}}=-\frac{\alpha_{\mathrm{k}} \mathrm{Q}_{0}^{1 / \mathrm{r}}\left(\prod_{\mathrm{s}}^{\mathrm{n}} \mathrm{p}_{\mathrm{s}}^{\alpha_{\mathrm{s}}}\right)^{1 / \mathrm{r}}}{\left(\gamma \prod_{\mathrm{s}}^{\mathrm{r}} \alpha_{\mathrm{s}}^{\alpha_{\mathrm{s}}}\right)^{1 / \mathrm{r}}} \frac{\mathrm{r}-\alpha_{\mathrm{k}}}{\mathrm{r} p_{k}^{2}}, \mathrm{k}=\overline{1, \mathrm{n}}$
$\frac{\partial \overline{\mathrm{x}}_{\mathrm{k}}}{\partial p_{i}} \frac{\alpha_{\mathrm{k}} \mathrm{Q}_{0}^{1 / \mathrm{r}}\left(\prod_{s}^{\mathrm{n}} \mathrm{n}_{1} \mathrm{p}_{\mathrm{s}}^{\alpha_{s}}\right)^{1 / \mathrm{r}}}{\left(\gamma \prod_{\mathrm{s}=1}^{\mathrm{n}} \alpha_{\mathrm{s}}^{\alpha_{\mathrm{s}}}\right)^{1 / \mathrm{r}}} \frac{\alpha_{\mathrm{i}}}{\mathrm{rp}_{\mathrm{i}} \mathrm{p}_{\mathrm{k}}}, \mathrm{k}, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{i} \neq \mathrm{k}$
The first differential of $\overline{\mathrm{x}}_{\mathrm{k}}$ is:

$$
\begin{aligned}
& d \overline{\mathrm{x}}_{\mathrm{k}}=\sum_{i=1}^{n} \frac{\partial \overline{\mathrm{x}}_{\mathrm{k}}}{\partial p_{i}} d p_{i}=\frac{\alpha_{\mathrm{k}} \mathrm{Q}_{0}^{1 / \mathrm{r}} \prod_{\mathrm{s}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{s}}^{\alpha_{\mathrm{s}}} \mathrm{~s}^{1 / \mathrm{r}}}{\mathrm{rp}\left(\gamma \prod_{\mathrm{s}=1}^{\mathrm{s}} \alpha_{\mathrm{s}}\right)^{1 / \mathrm{r}}}\left(-\frac{\mathrm{r}-\alpha_{\mathrm{k}}}{p_{k}} d p_{k}+\sum_{\substack{i=1 \\
i \neq k}}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} d p_{i}\right)= \\
& \\
& \frac{\alpha_{\mathrm{k}} \mathrm{Q}_{0}^{1 / \mathrm{r}}\left(\prod_{\mathrm{s}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{s}}^{\alpha_{\mathrm{s}}}\right)^{1 / \mathrm{r}}}{\mathrm{rp}_{\mathrm{k}}\left(\gamma \prod_{\mathrm{s}=1}^{\mathrm{n}} \alpha_{\mathrm{s}}^{\alpha_{\mathrm{s}}}\right)^{1 / \mathrm{r}}}\left(-\frac{\mathrm{r}}{p_{k}} d p_{k}+\sum_{i=1}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} d p_{i}\right)
\end{aligned}
$$

The factor \bar{x}_{k} will decrease if and only if: $d \overline{\mathrm{x}}_{\mathrm{k}}<0 \Leftrightarrow-\frac{\mathrm{r}}{p_{k}} d p_{k}+\sum_{i=1}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} d p_{i}<0 \Leftrightarrow \frac{\mathrm{r}}{p_{k}} d p_{k}>\sum_{i=1}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} d p_{i}$ $\Leftrightarrow \frac{d p_{k}}{p_{k}}>\frac{\sum_{i=1}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} p_{i}}{r}-\frac{\sum_{i=1}^{n} \frac{\alpha_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}} d p_{i}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}}}$. If we note: $\varphi_{\mathrm{i}}=\frac{\alpha_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}}} \in(0,1)$ we obtain: $\frac{d p_{k}}{p_{k}}>\sum_{i=1}^{n} \varphi_{i} \frac{d p_{i}}{p_{i}}$ and $\sum_{i=1}^{n} \varphi_{i}=1$.
$\frac{d p_{k}}{p_{k}}>\frac{1}{1-\varphi_{k}} \sum_{\substack{i \neq k}}^{n} \varphi_{i} \frac{d p_{i}}{p_{i}}$ or $\frac{d p_{k}}{p_{k}}>\frac{\sum_{i=1}^{n} \varphi_{i} \frac{d p_{i}}{p_{i}}}{\sum_{\substack{i=1 \\ i \neq k}}^{n} \varphi_{i}}$. If we note again: $\lambda_{i}=\frac{\varphi_{i}}{\sum_{i=1}^{n} \varphi_{i}}, \mathrm{i}=\overline{1, n}, \mathrm{i} \neq \mathrm{k}$ we have: $\sum_{\substack{i \neq 1 \\ i \neq k}}^{n} \lambda_{i}=1$.
The condition becomes: $\frac{d p_{k}}{p_{k}}>\sum_{\substack{i=1 \\ i \neq k}}^{n} \lambda_{i} \frac{d p_{i}}{p_{i}}$ On the other hand, the expression $\sum_{\substack{i=1 \\ i \neq k}}^{n} \lambda_{i} \frac{d p_{i}}{p_{i}}$ represents the convex combination of the relative variations of the factors except for p_{k}.

Therefore, a relative variation of the pk factor outside the convex combination (for clarification, the convex combination of two quantities is given by the inside of the segment, three sizes by the inside of the triangle etc.) will lead to a decrease of its absolute value.
For example, if $\frac{d p_{i}}{p_{i}}=\mathrm{C}, \mathrm{C} \in \mathbf{R}$ we will have that: $\frac{d p_{k}}{p_{k}}>\mathrm{C}$ will lead to a decrease of absolute value of \bar{x}_{k}.
A concrete example is that of the labor force. In the conditions of inflationary pressures that increase the prices of other factors of production (electricity, liquid fuels etc.) by a percentage of $\mathrm{C} \%$, in order to maintain the existing labor force, wages must increase by at most $\mathrm{C} \%$.

More:
$\frac{d \overline{\mathrm{x}}_{\mathrm{k}}}{\bar{x}_{k}}=-\left(\sum_{\substack{\mathrm{i}=1 \\ i \neq k}}^{\mathrm{n}} \alpha_{\mathrm{i}}\right) \frac{d p_{k}}{p_{k}}+\sum_{\substack{i=1 \\ i \neq k}}^{n} \alpha_{\mathrm{i}} \frac{d p_{i}}{\mathrm{p}_{\mathrm{i}}}=r\left(-\left(1-\varphi_{k}\right) \frac{d p_{k}}{p_{k}}+\sum_{\substack{i=1 \\ i \neq k}}^{n} \varphi_{\mathrm{i}} \frac{d p_{i}}{\mathrm{p}_{\mathrm{i}}}\right)$
which expresses the relative variation of the factor x_{k} as a function of the relative variations of the prices p_{i}.
Let us now calculate the influence of the price increase of one of the factors of production on the total cost of production.
$\frac{\partial T C\left(Q_{0}\right)}{\partial p_{i}}=\frac{\mathrm{r}_{0}^{1 / \mathrm{r}}\left(\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}}^{\alpha_{\mathrm{k}}}\right)^{1 / \mathrm{r}}}{\left(\gamma \prod_{\mathrm{k}=1}^{\mathrm{k} k \alpha_{\mathrm{k}}} \alpha_{\mathrm{k}}^{\alpha_{\mathrm{k}}}\right)^{1 / \mathrm{r}}} \frac{\alpha_{i}}{r} \mathrm{p}_{\mathrm{i}}^{\frac{\alpha_{\mathrm{i}}}{r}-1}=\frac{\mathrm{rQ}_{0}^{1 / \mathrm{r}}\left(\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}}^{\alpha_{\mathrm{k}}}\right)^{1 / \mathrm{r}}}{\left(\gamma \prod_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}^{\mathrm{\alpha}_{\mathrm{k}}}\right)^{1 / \mathrm{r}}} \frac{\alpha_{i}}{r p_{i}} T C\left(Q_{0}\right) \frac{\alpha_{i}}{r p_{i}}$
Therefore:
$d T C\left(Q_{0}\right)=\sum_{i=1}^{n} \frac{\partial T C\left(Q_{0}\right)}{\partial p_{i}} d p_{i}=\sum_{i=1}^{n} T C\left(Q_{0}\right) \frac{\alpha_{i}}{r p_{i}} d p_{i}$ from where:
$\frac{d T C\left(Q_{0}\right)}{T C\left(Q_{0}\right)}=\sum_{i=1}^{n} \frac{\alpha_{i}}{r} \frac{d p_{i}}{p_{i}}=\sum_{i=1}^{n} \varphi_{i} \frac{d p_{i}}{p_{i}}$.
As a result of these calculations, the relative variation of the total cost will be found in the convex combination of the relative variations of the factors of production.

References

Chiang, A. C. (1984). Fundamental Methods of Mathematical Economics. McGraw-Hill Inc.
Harrison, M. \& Waldron P. (2011). Mathematics for Economics and Finance. Routledge.
Ioan, C. A. \& Ioan, G. (2011). The Extreme of a Function Subject to Restraint Conditions. Acta Universitatis Danubius. EEconomica 7, 3, pp. 203-207.

Ioan C.A. \& Ioan G. (2012). On the General Theory of Production Functions. Acta Universitatis Danubius. Economica, no.5, vol.8, ISSN 2065-0175, pp. 223-236.
Simon, C. P. \& Blume, L.E. (2010). Mathematics for Economists. w.w.w. Norton\&Company.
Stancu S. (2006). Microeconomics. Bucharest: Ed. Economica.

[^0]: 1 Danubius University of Galati, Romania, Address: 3 Galati Blvd., 800654 Galati, Romania, E-mail: catalin_angelo_ioan@univ-danubius.ro.

